Schonhardt polyhedron and IMS-2013/4 program

One cannot always triangulate a non-convex polyhedron using only its vertices, sometimes one need to add more of them. A simple example of this phenomenon is Schonhardt polyhedron. Here is a picture illustrating how one builds it that I drew for a forthcoming paper, using Tikz LaTeX package, which is awesome, but totally overwhelming.

Image

It fact, it’s easy to see that the 6 vertices and 12 edges it has are not enough. Indeed, each pair of non-intersecting edges determines a simplex, but it’s easy to observe that any such selection will include one the forbidden pairs of vertices AC, A’B, or B’C’. (The LaTeX source of the picture is here).

The paper I mention is related to a topic of the program on inverse moment problems at IMS (NUS/Singapore) in late 2013-early 2014 which I co-organize.

Advertisements

Tags: ,

One Response to “Schonhardt polyhedron and IMS-2013/4 program”

  1. Re: Schonhardt polyhedron, IMS-2013/4 program, etc… | Equatorial Mathematics Says:

    […] program announced at this post is finally happening, here is the official schedule […]

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s


%d bloggers like this: