Cosets and normal subgroups

Just as in the case of abelian groups, each subgroup H\leq G gives rise to a coset decomposition of G, or, more precisely, to two decompositions, into left cosets i.e.

\displaystyle \{gH\mid g\in G\},

and right cosets, i.e.

\displaystyle \{Hg\mid g\in G\}.

It is proved by the same argument as in the case of abelian groups that one indeed has decompositions of G in this way.
Unlike in the case of abelian groups, these two decompositions need not be the same: an example is given by S_3\geq H\cong S_2.
The following is an important and elementary implication of the fact that all the cosets of H have the same cardianlity:

Let |G|<\infty, and H\leq G. Then |H| divides |G|.

An extremely important case (and, in fact, the only case) when these two decompositions are the same is when H=Ker(\phi), where \phi: G\to F is a group homomorphism. (Just as in the case of abelian groups, one can show that Ker (\phi)\leq G and Im(\phi)\leq F.)
We need to show that for any g\in G and k\in Ker(\phi) one has gk=k'g for some k'\in Ker(\phi). We compute \phi(gk)=\phi(g)\cdot 1_F=\phi(k')\phi(g)=\phi(k'g). Hence gK=Kg.

A subgroup H\leq G satisfying gH=Hg for all g\in G is called normal (notation: H\unlhd G, or H\lhd G, when H\neq G.)

Often it is more convenient to work with the equivalent condition for normality, namely that gHg^{-1}=H for all g\in G.

Examples of normal subgroups.

  • The subgroup generated by \begin{pmatrix}1&2&3\\3&1&2\end{pmatrix} in S_3 is normal.
  • H\leq G=GL(n,\mathbb{F}) defined by H=\{x\in G\mid\det x=1\} is normal.
  • H\leq G of index 2 (i.e. the one that has exactly 2 left cosets in G) is normal.

The 1st is easy to establish directly (it also follows from the 3rd).The 2nd follows from the identity \det x=\det (gxg^{-1}).
The 3rd follows from the equality G=H\sqcup gH=H\sqcup Hg', and an observation that g\in Hg', so Hg'=Hg.

Cosets play an important role in constructing “easier” groups from “complicated” ones, by the quotient group construction. The difference with the case of abelian groups is that only normal subgroups can be kernels of homomorphism.

Let H\unlhd G. Then G/H:=\{gH\mid g\in G\} is a group with operation (gH)(g'H)=(gg')H, and g\mapsto gH a group homomorphism \phi: G\to G/H with the kernel Ker\phi=H.

We need to use gH=Hg to establish that the multiplication in G/H is well-defined: (gH)(g'H)=(gH)(Hg')=g(HH)g'=g(Hg')=(gg')H.
Then G/H is a group with the identity element H, as associativity in G/H follows from the associativity in G, and (gH)^{-1}=(g^{-1})H.
It can be readily checked that \phi is a homomorphism, and that H= Ker\phi. Indeed, \phi(gg')=(gg')H=(gH)(g'H). Also, \phi(h)=hH=H for h\in H, and so H\leq Ker\phi. On the other hand if g\in G-H then \phi(g)=gH\neq H, and so H\geq Ker\phi.

Matrix groups
Subgroups of GL_n(\mathbb{F}), the group, with respect to matrix multiplication, of invertible n\times n matrices with entries in a field \mathbb{F}, provide a rich playground for various examples of normal subgroups and quotient groups. To this end, we will work with block matrices, i.e. we will partition our matrices into rectangular blocks of appropriate size, so that this block decomposition is preserved under the matrix multiplication. The simplest case is the following partition into 4 blocks (i.e. 2\times 2 block matrices).

Given an n\times n matrix A and positive integer p<n, we can view A as A=\begin{pmatrix} A_{11}&A_{12}\\A_{21} & A_{22}\end{pmatrix}, where A_{11} is a p\times p matrix, A_{22} a (n-p)\times (n-p) matrix (and certainly A_{12} and A_{21}^T being of size p\times (n-p)).

Let us fix n and p.
First, we need to convince ourselves (an easy exercise in matrix multiplication) that the following multiplication law works for two block matrices A and B:
\displaystyle AB=C=\begin{pmatrix} A_{11} B_{11}+A_{12}B_{21}& A_{11}B_{12}+A_{12}B_{22}\\ A_{21}B_{11}+A_{22}B_{21}&A_{21}B_{12}+A_{22}B_{22}\end{pmatrix}
It should of course look very familiar, as this is exactly how two 2\times 2 matrices are multiplied.
When A_{21}=B_{21}=0, we see that the shape is preserved, i.e. C_{21}=0. More precisely
\displaystyle AB=C=\begin{pmatrix} A_{11} B_{11}& A_{11}B_{12}+A_{12}B_{22}\\ 0 &A_{22}B_{22}\end{pmatrix}
We see that the blocks with indices 11 and 22 behave as if “nothing around them matters”, as if they sit in their own groups G_p(\mathbb{F}) and G_{n-p}(\mathbb{F}) (that is, assuming the matrices we talk about are invertible). We can formalise this observation as follows.

Let H<GL_n(\mathbb{F}) be a subgroup of 2\times 2 block matrices, with diagonal blocks of sizes p\times p and (n-p)\times (n-p), and such that A_{21}=0 for all A\in H. Then

  1. the maps
    \phi_1 : H\to GL_p(\mathbb{F}):\quad A\mapsto A_{11} and
    \phi_2 : H\to GL_{n-p}(\mathbb{F}):\quad A\mapsto A_{22}
    are group homomorphisms.
  2. Ker(\phi_k)=\{A\in H\mid A_{kk}=I\} for k=1,2.

The reader is encouraged to provide a proof.
More generally, this result can be interpreted in terms of the actions of H on the n-dimensional vectorspace V over \mathbb{F}.

Exercise. Prove that the intersection of two normal subgroups of a group is a normal subgroup. Based on this, describe Ker(\phi_1)\cap Ker(\phi_2), and derive that \{A\in H\mid A_{11}=I, A_{22}=I\} is a normal subgroup of H.

Note that Im(\phi_k) (where k=1 or K=2) cannot be obtained by simply setting the remaining off-diagonal block of H to 0, and the remaining diagonal block to the identity matrix. For instance, let H<GL_2(\mathbb{C}) be generated by the matrix X=\begin{pmatrix} \mathbf{i}&0\\ 0& -1\end{pmatrix}, where \mathbf{i}=\sqrt{-1}. Then H is a cyclic group of order 4, and it satisfies the conditions of the above lemma with n=2, p=1. It is easy to see that \phi_1 is an isomorphism, and \phi_2 is a homomorphism with the kernel generated by X^2.

Let us denote K_k=Ker(\phi_k), and K_{12}=K_1\cap K_2.
As |H|=|K_k||Im(\phi_k)|, by the usual argument involving decomposition of H into the cosets of K_k, computing |H| for \mathbb{F}= \mathbb{Z}_q, for q prime, can be accomplished by computing |K_k| and |Im(\phi_k)| separately. In turn, |K_k|=|K_{12}||Im(\phi_{3-k}|, so we can simplify the task of computing |K_k|, too.

To illustrate this principle, let us compute the order of
\displaystyle H=\{A\in GL_n( \mathbb{Z}_q)\mid A_{21}=0.\}\qquad\qquad (1)
First we derive the following:

|GL_m( \mathbb{Z}_q)|=(q^m-1)(q^m-q)(q^m-q^2)\dots (q-1), where q is prime.

Indeed, we can fill in the 1st row of an m\times m matrix in q^m-1 way (everything goes, except all zeros). Fixing this 1st row vector v_1, we can again fill in the 2nd row with entries of any vector v_2, which is linearly independent (to get an invertible matrix) of v_1, i.e. lies outside of the subspace V_1 spanned by v_1. As |V_1|=q, we get q^m-q ways to choose v_2. Now we fix v_2, as well, and fill in the 3rd row with entries of any vector v_3, which is linearly independent of v_1 and v_2, i.e. lies outside of the subspace V_2 spanned by v_1 and v_2. As |V_2|=q^2, we get q^m-q^2 ways to choose v_2.
So when filling the (\ell+1)-th row, we have q^m-q^\ell choices, giving us the formula above.

Now, we claim that |K_{12}|=q^{p(n-p)}. Indeed, K_{12} consists of A such that A_{21}=0, A_{11}=I, A_{22}=I, whereas we can fill the entries of A_{12} without any strings attached – the result will be invertible. Thus we have
|H|=(q^p-1)(q^p-q)\dots (q-1)  q^{p(n-p)} (q^{n-p}-1)(q^{n-p}-q)\cdots (q-1).

Excercise. Compute |H'| for H'=\{A\in H\mid \det A=1\} and H as in (1).
(Hint: use the fact that \det is a group homomorphism.)


Tags: , ,

3 Responses to “Cosets and normal subgroups”

  1. 2010 in review – Happy New Year! « Equatorial Mathematics Says:

    […] Cosets and normal subgroups March 2009 4 […]

  2. madhuri rakshit Says:

    i want previous years questions of iit jam about normal subgroup.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: